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The Modified Nodal Approach to Network 
Analysis 

CHuNG-WEN HO, MEMBER, IEEE, ALBERT E. RUEHLI, MEMBER, IEEE, AND PIERCE A. BRENNAN 

Absrruct-The nodal method has been widely used for formulating 
circuit equations in computer-aided network analysis and design pro- 
grams. However, several limitations exist in this method including the 
inability to process voltage sources and currentdependent circuit ele- 
ments in a simple and efficient manner. A mod&d nodal analysis (MNA) 
method is proposed here which retains the simplicity and other advan- 
tages of nodal analysis while removing its limitations. A simple and 
effective pivoting scheme is also given. Numerical examples are used to 
compare the MNA method with the tableau method. Favorable results 
are observed for the MNA method in terms of the dimension, number of 
nonzeros, and till-ins for comparable circuit matrices. 

I. INTRODUCTION 

T HE method by which circuit equations are formulated 
is of key importance to a computer-aided circuit 

analysis and design program for integrated circuits. It 
affects significantly the set-up time, the programming 
effort, the storage requirements, and the execution speed of 
the computer program. The method which one selects 
needs to be flexible, computationally efficient, and econom- 
ical with storage. The nodal approach for formulating 
circuit equations is a classical method which not only meets 
these requirements but also yields a numerically well- 
behaved diagonal. It is therefore very popular and has been 
widely used in modern computer programs such as 
CANCER [I], ECAP [2], and BIAS-3 [3]. However, in 
its basic form it treats voltage sources inefficiently and is 
incapable of including current-dependent elements, linear 
or nonlinear. Therefore, several attempts have been made 
in the past to generalize the method. For example, in the 
CANCER program, each of the independent voltage 
sources is replaced by Norton equivalent current sources 
across every branch connected to the positive node of the 
voltage source. Calahan [4] used gyrators to convert linear 
and nonlinear inductors to capacitors in the time domain. 
Furthermore, extremely small or negative resistances [S] 
were introduced in some programs to accommodate current 
dependencies. Another disadvantage of the nodal method 
is that branch currents are not accurately or conveniently 
obtained as part of the output of the program. These 
complications may have contributed to the fact that other 
methods were implemented in the ECAP II [6] and ASTAP 
[7] programs. 

Here, a set of self-consistent modifications to the nodal 
method are proposed and the resultant formulation is 
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called the modified nodal analysis (MNA). The MNA 
resolves all the above-mentioned problems in the nodal 
method while preserving its advantages. 

In Section II, some details of the MNA method are 
presented while an appropriate matrix ordering or pivoting 
scheme is discussed in Section III. Section IV gives practical 
examples in which the impact of the equation formulation 
upon the set-up time, execution speed, and storage require- 
ments of the equations are discussed. The results are then 
compared to a tableau type method. Finally, Section V 
is devoted to discussion and conclusions. 

II. MODIFIED NODAL APPROACH 

In formulating the circuit equations by using the MNA 
for a given network, we first start with the set of nodal 
voltages versus a common datum node as variables as is 
the case in the basic nodal method. Kirchhoff’s current 
law is applied to each node other than the datum node 
in the circuit such that the summation of currents leaving 
the node is equal to zero. For the simple case of a circuit 
containing only linear conductances and independent 
current sources, the MNA generates the same set of equa- 
tions as in the nodal formulation 

Y_v = J (1) 

where Y represents the node admittance matrix, y the 
common datum voltages, and _J the current source vector. 
For the circuits which contain voltage sources and other 
elements whose currents are controlling variables, the 
MNA proceeds by introducing those branch currents as 
additional variables and the corresponding branch con- 
stitutive relations as additional equations. These branch ’ 
currents are available as additional output variables. This 
is illustrated first for the example network shown in Fig. 1. 
Two currents IE and I3 are catenated to the unknown vector 
as is shown in Fig. 2 and branch relations are introduced 
for the voltage source and the nonlinear conductance. The 
nonlinearity in this example is expressed in terms of a 
Newton-Raphson iteration scheme, e.g., [lo]. 

The MNA matrix can in general be expressed in the form 

(2) 

where Y, is a reduced form of the nodal matrix excluding 
the contributions due to voltage sources, current controlling 
elements, etc. B contains partial derivatives of the Kirchhoff 
current equations with respect to the additional current 



Ho et al. : mmomc mArxIs 

Fig. 1. Example network. 
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Fig. 2. Modified nodal equation for example network. 

variables and thus contains f l’s for the elements whose 
branch relations are introduced. The branch constitutive 
relations, differentiated with respect to the unknown vector, 
are represented by the matrices C and D. It is noted that 
the zero-nonzero pattern of C is basically the same as that 
of BT except for some nonreciprocal elements. The vectors 
J and F are excitations which include the initial values from 
previous time steps corresponding to capacitors and in- 
ductors which will be discussed in more detail later. It is 
advantageous to consider the contributions of each circuit 
element to the MNA matrix separately. Specifically, the 
“element rubber stamps” given in Table I corresponding to 
the circuit of a “general node” shown in Fig. 3 summarize 
the contributions for each type of element, where BR refers 
to the additional branch relation and RHS is the contribu- 
tion to the right side of (2). The MNA matrix can be gener- 
ated by using the element stamp table in a straightforward 
manner. For a given circuit, the matrix dimension is simply 
the sum of the number of nodes excluding the ground 
node plus the number of currents as outputs. We first 
arbitrarily label every node in some order then continue 
to label every element whose current is one of the outputs. 
We then collect all the elements in the network and process 
them one by one. For each element, depending on whether 
its current is an output or not, its contributions to the 
matrix can simply be read from the table and stamped into 
the matrix according to its node number or current number 
just labeled. The matrix in (2) is obtained when all elements 
are processed. 

Capacitances and inductances are considered only in 
the time domain and their contributions, shown in Table I, 
are obtained by applying finite differencing methods to their 
branch relations. For example, the time derivative for the 
capacitor current i,(t) = C(dv,/dt) is represented in terms 
of an implicit integration scheme [lo] as 

c 
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TABLE I 
STAMPS FOR NETWORK ELEMENTS 
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Fig. 3. General node. 

where h is the time step, and vcP is a function of u,(t) at 
previous time points. Equation (3) can thus be represented 
by a conductance of C/h in parallel with a current source 
C(v,,/h). The element stamps for a capacitor C in Table I 
are thus found by using (3). The stamp is different depending 
on whether the capacitor current is selected as an unknown 
variable or not. 

General aspects for the derivation of stamps are dis- 
cussed next. The branch current is always introduced as an 
additional variable for a voltage source, either independent 
or dependent, and an inductor and is thus readily available 
as an output variable. For current sources, resistors, 
conductances, and capacitors, this is only done under the 
following conditions : 

1) if other nonlinear circuit elements depend on its 
current ; and 

2) if the branch current is requested as an output variable. 
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The stamps given in Table I corresponding to Fig. 3 
have been derived using these considerations. Having 
determined the proper set of MNA equations as discussed 
previously, nonlinear circuit elements are first processed as 
linear elements, as shown in Table I. The partial derivatives 
of those elements versus their controlling variables con- 
tribute additional nonzeros in the MNA matrix. They are 
handled in a similar fashion as the example in Fig. 1 and 
hence are not discussed further. It is to be emphasized, 
however, that for most practical circuits, the number of 
additional variables and equations introduced, i.e., number 
of voltage sources, inductors, etc., is small compared to 
the number of nodes. The resultant set of variables and 
equations is thus large enough to include all useful in- 
formation and yet small enough to make the formulation 
efficient. 

III. PIVOT ORDERING STRATEGY 

The MNA equations are-ordered in such a way that both 
execution time and storage requirements are small. In 
principle, a general pivoting strategy similar to the one used 
in OPTORD [8] could be applied. However, the nodal 
method yields a strong diagonal which is well suited for 
pivoting down the diagonal from both an accuracy and 
efficiency point of view [I], [4]. In choosing a pivoting 
strategy for the modified nodal matrix we want to maintain 
this strong diagonal. 

Consider the zero-nonzero pattern for the MNA matrix 
in Fig. 4 which represents a 15 transistor, 25 node J-K 
flip-flop [13] before pivot ordering. For completeness, 
the right-hand side of (2) is catenated to the matrix as the 
last column [ll]. In the pivoting scheme discussed below, 
we may assume that the last row and column are removed. 
Pivoting is always carried out in the three steps discussed 
below, which are the processing of singletons, row inter- 
change, and pivoting on the diagonal. 

A. Processing of Singletons 

We begin by choosing row and column singletons (rows 
and columns with only one element in them) as the initially 
assigned pivots. These singletons are due to either voltage 
sources having one terminal grounded or due to current 
sources. They are circled in the example matrix Fig. 4 for 
identification purposes. 

The singletons are well suited for pivoting since their 
numerical values are + 1 and they do not introduce any 
fill-ins. Furthermore, off-diagonal singletons always appear 
in pairs located symmetrically with respect to the diagonal 
for the MNA matrix, as can be seen from Table I or Fig. 4. 
This is necessary for these singletons since pivoting on an 
off-diagonal element (and therefore, removing the cor- 
responding row and column from the matrix) shifts the 
diagonal from its original position. Then pivoting on its 
mirror image restores it to its original position. Thus, after 
all singletons are designated as pivots, the new diagonal 
remains as part of the original strong diagonal. The pro- 
cedure, therefore, is to first choose all row and column 
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000011000000000000000001 
000000110000011001000000 
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000001 
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00000000000000000~000006 l000001 

Q00000000000000~00000000 I000001 ++b 000000000000000(lJ00000000000001 
00~000000.000000000000000000001 
0000Q0000000000000000000000001 
00000000000000000000000000000Q 

Fig. 4. Modified nodal matrix before pivoting. 

singletons with the column singletons pivoted first and the 
row singletons reserved to be pivoted last. 

B. Row Interchange 

At this point, all singletons have been assigned as pivots 
and are removed from considerations. The diagonal of the 
remaining matrix is preserved as part of the original one. 
Next, certain rows are interchanged before further pivots 
are selected. As shown in Table I, branch relations are 
always introduced for voltage sources and inductors. 
Voltage sources with one grounded terminal are not of 
interest since they have been taken care of by processing 
the singletons. The rest of the voltage sources and inductors 
do not contribute to the diagonal positions in their respective 
nodal equations. However, in each row of the branch 
relations they do contribute a + 1 and a - 1 in the columns 
corresponding to the diagonal positiohs of the respective 
nodal equations. Thus a + 1 will appear on the diagonal 
positions of both interchanged rows if the branch relation 
is interchanged with either of the nodal equations. For 
example, in the element stamp corresponding to L in Table 
I, interchanging row 5 with row BR results in a - 1 in both 
of the new diagonal positions. 

The interchange process is applied to the node equation 
of each node connected to one or more of the voltage 
sources (E’s) and inductors (L’s). The node equation is 
always interchanged with one of the branch relations of 
those E’s and L’s having the smallest number of nonzeros 
to minimize fill-ins. Row exchange leads to ) 1 in the 
diagonal positions and generally results in a reduction of 
fill-ins since the number of nonzeros in rows corresponding 
to the branch relation is usually small. Further, complete 
numerical cancellation for pivoting along the diagonal is 
avoided. This may occur in the case where R, G, or C 
(without current specified) is connected between L’s or E’s 
only. A similar situation may occur if each of the above 
mentioned L’s and E’s is replaced by another type of 
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element with its current specified as an output. However, 
this situation is not of practical interest. 

C. Pivoting on Diagonal 

The remaining pivot elements are now chosen from the 
diagonal terms of the processed matrix using a Markowitz 
type criteria to minimize the number of fill-ins [12]. Equa- 
tions with empty diagonal terms, e.g. branch relations for 
voltage sources not selected to interchange with node 
equations are temporarily excluded from contention. 
However, because of the way the stamp corresponding to 
voltage sources is defined in Table I, a fill-in is guaranteed 
to take place in the diagonal position and the element can 
then be considered as a candidate for subsequent pivot 
selection. The row count Y and the column count c are 
found for all pivot candidates and a weight of (CY) is 
associated with the pivots. The next pivot is the one with 
the smallest weight (ties are arbitrarily broken) and the 
matrix is reduced by elimination of the pivot row and 
column. The process is repeated until ,a11 pivots are found. 
Fig. 5 illustrates the zero-one structure of the MNA 
matrix after pivoting and fill-ins with the fill-in elements 
indicated by circles. 

IV. RESULTS AND COMPARISON 

Three major areas of importance contributing to the 
overall efficiency of a circuit analysis and design program 
are the set-up time, storage requirements, and execution 
speed. The basic network equation formulation impacts 
all three areas. Specifically, the matrix size and row and 
column counts are formulation dependent with different 
formulation methods resulting in different numbers of fill-ins 
even if the same pivoting strategy is used. The method of 
equation formulation impacts the set-up time which in- 
cludes forming the circuit matrix, selecting the pivots, and 
generating the code for solving the linear equations. Since 
both storage requirements and execution time depend on 
the matrix dimension and the number of nonzeros in the 
matrix they are also dependent on the formulation method. 

A comparison has been made between a new version of 
the tableau formulation (TA) [9], presently one of the more 
sophisticated techniques available, and the MNA method 
to evaluate the relative merits of the approaches. In TA, the 
topological relations of cut-set and fundamental circuit 
equations are arranged in such a way that the left half of 
the corresponding matrix is an identity matrix. The lower 
half of the matrix, which represents the branch constitutive 
relations, is processed by pivoting on the unity matrix. A 
partial pivoting scheme of the Markowitz type [12] is 
used for the lower half of the matrix. For the comparison, 
the MNA approach discussed in the previous section has 
been implemented in an experimental computer program. 
The two approaches are applied to four switching type 
circuits and the results are summarized in Table II. Circuit 1 
is the J-K flip-flop [ 131 corresponding to Figs. 4 and 5. 
Circuit 2 is a differential switching circuit shown in Fig. 6 
while circuit 3 represents three cascaded sections and circuit 
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TABLE II 
COMPARATIVE MATRIXDATA FOR FOUR EXAMPLE CIRCUITS 
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0000000001000001000Q0110000011 
00000000101000001000011@000011 
0000000000000100010~1100000001 
00000000000000100010101Q000001 
000000100101010Q0Q01~~~0~~~~~~ 
0000010000011000011 
0000000000000001110 

b,,,b 
110 000001 
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0 INDICATES FILL-IN 
Fig. 5. Modified nodal matrix after pivoting with fill-ins. 

Fig. 6. A 154-branch 46-node circuit. 
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(b) 

Fig. 7. (a) Basic circuit Cl. (b) Cascaded basic circuits. 

4 is four cascaded sections of the basic current switch circuit 
in Fig. 7(a). A four-element Ebers-Moll intrinsic model is 
used for the transistors. 

As can be observed in Table II, the dimension of the 
MNA matrix is a factor of 5-7 smaller than the TA matrix 
for the four example circuits. The number of nonzeros 
entering the matrix for the MNA is about a factor of 2 less 
than the TA. However, since nonzeros are combined in the 
MNA matrix even before matrix processing, while every 
nonzero value enters into a different position in the TA 
matrix, the resultant number of nonzeros in the MNA 
matrix becomes a factor of 5 less than that of the TA 
matrix. This substantially reduces the processing time for 
pivot selection, pointers, or machine code generation for 
the MNA method. An even larger ratio is observed for 
the numbers of fill-ins for the two approaches corresponding 
to the four examples. Specifically, they differ by more than 
a factor of 10 for all cases. A contributing factor is the 
scheme used for preprocessing row and column singletons 
such that the original MNA matrix is reduced to a smaller 
irreducible block which results in fewer possible fill-ins. 
The total number of nonzeros for the two approaches after 
fill-ins differ by a factor of about 7. 

The exact set-up time, storage requirement, and execution 
speed of a computer-aided circuit analysis and design 
program depends also on the programming implementation 
and other numerical techniques which are not discussed 
in the present paper. However, the numerical results given 
previously should be sufficient evidence to indicate that 
the MNA has a favorable impact on the performance of 
such a program. 

V. DISCUSSION AND CONCLUSIONS 

Several examples have been given in this paper for testing 
the MNA. For the circuits analyzed, a smaller matrix 
results than that obtained from the tableau type of formula- 
tion as is to be expected. More importantly, the number of 
nonzero elements after fill-ins is about a factor seven less 
in the MNA matrix. The difference between the two 
formulations will be reduced if a large number of branch 

currents are requested as outputs. However, this is not the 
case for most practical applications. 

The following conclusion can be drawn from the results 
obtained from the experimental MNA program. First, the 
classical nodal approach can be extended such that its 
disadvantages are removed and its usage becomes com- 
pletely general. Secondly, the set-up time spent and the 
amount of storage required for matrix pivoting, sparse 
matrix pointer, code generation, etc., are considerably 
reduced by the MNA compared to a tableau-type approach. 
Finally, for the execution speed required in solving linear 
equations, there are two cases. For large network whose 
SOLVE code [8] may require too much core for the 
computer at hand, the recursive Gaussian elimination type 
of sparse matrix method suggested by Chang [14] should 
be used. For this case, since the MNA method generates 
a much smaller matrix and less nonzeros, it is much faster 
than the TA method because the execution speed is directly 
proportional to the dimensions and nonzeros of the matrix. 
On the other hand, if the Crout algorithm is used for the 
SOLVE code generation for solving sparse matrices, the 
variability type concept [8] can be applied to optimize 
the code in terms of speed. As a result, the difference in 
execution speed for different formulations is not very clear. 
As reported by Hachtel et al. [8] in their example illustrated 
in their Table VII, a tableau matrix is first set up. Two 
pivoting schemes were used. One is the optimized pivoting 
order and the other is to .constrain the pivoting order to 
reduce the matrix to a nodal matrix first then proceed 
from there. The results show that the execution speeds for 
the two pivoting schemes are very close. (The optimized 
pivoting is about 2 percent faster if we assume that for 
every time step there are, on the average, two Newton 
iterations.) However, if, as is proposed in this paper, the 
nodal matrix is set up directly instead of starting from a 
tableau and then reducing it to the nodal matrix, the 
execution speed will improve because some intermediate 
load and store instructions cannot be eliminated by the 
optimized complier. At present, no quantitative results 
have been obtained for this speed improvement. 
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Low-Transient Intermediate-Band 
Crystal Filters 

HERMAN J. BLINCHIKOFF, SENIOR MEMBER, IEEE 

Abstract-A general technique for obtaining intermediate-band crystal 
filters from prototype low-pass (LP) networks which are neither sym- 
metric nor antimetric is presented. This immediately enables us to now 
realize the class of low-transient responses. The bandpass (BP) filter 
appears as a cascade of symmetric lattice sections, obtained by par- 
titioning the LP prototype filter, inserting constant reactances where 
necessary, and then applying the LP to BP frequency transformation. 
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The cascade is composed of only two fundamental sections. Finally, the 
method introduced is illustrated with an example. 

I. INTRODUCTION 

B ANDPASS (BP) crystal filters are usually divided into 
the following three bandwidth classes according to their 

design. 
1) Narrow band: This class comprises relative band- 

widths less than about 0.2 percent; no loading inductors are 
included [ l]-[3]. 
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